Modelling of a novel x-ray source for MR-guided Radiotherapy

<u>Natalia Roberts,</u> Brad Oborn, Jarrad Begg, Armia George, Sarah Alnaghy, Trent Causer, Thahabah AlHarthi, Bin Dong, Urszula Jelen, Lois Holloway, Peter Metcalfe

Monte Carlo Techniques for Medical Applications, October 2017

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

October 2017

1 / 14

Introduction

Collaborators of Australian MRI-linac program

イロト イポト イヨト イヨト

・ロト ・ 日 ・ ・ ヨト

Clinical Linear Accelerator

Varian Clinac, Varian Medical Systems

Linear Accelerator and MLCs for MRI-Linac

Varian Linatron MP and Millenium 120-leaf MLC

メロト メロト メヨト メ

Aims

- To develop a Monte Carlo model of the Australian MRI-linac using Geant4
- Develop Monte Carlo Treatment Verification System
 - Model magnetic field
 - Methods of calculating dose to a moving/deforming tumour

メロト メロト メヨト メ

Methods

Geant4 Simulations:

- Version 10.2.p01
- Physics List: G4EmLivermorePhysics
- 2 stage simulation:
 - **Stage 1:** electron beam simulated above target and phase space scored above MLCs
 - **Stage 2:** read in phase space from above MLCs, read in MLC postions and score dose in phantom

Methods

Setup:

- Modelling high energy beam (6MV)
- No magnetic field
- Measurements taken using:
 - CC13 ion chamber in water phantom (open field)
 - EBT3 film in solid water (MLC field sizes)
- Source-to-Isocentre Distance variable 1.8-3.2m
- Open Field and MLC defined field sizes

Simulation Parameters Varied:

- Spot Size
- Energy

・ロト ・回ト ・ヨト

Results

Variations in Electron Beam Size Open field measured with CC13 ion chamber in water tank

X Profile, Depth 8.4cm in Water Tank

Percentage Depth Dose in Water Tank

・ロト ・回ト ・ヨト

Variations in Electron Beam Energy

Monoenergetic electron beams displayed, open field measured with CC13 ion chamber in water tank

X Profile, Depth 8.4cm in Water Tank

Percentage Depth Dose in Water Tank

Results

Energy Spectrum of current model

Energy 5.6MeV, Spot size 1mm

・ロト ・回ト ・ヨト

Results

MLC defined field size data Measured with EBT3 film in solid water

Roberts et al. (UOW, CMRP)

- Energy of beam approximately 5.6-6.0MV
- Electron spot size approximate to 1mm
- Close match between MC data and measurements for open field data
- MLC defined field sizes in good agreement
- Model magnetic field from MRI and compare to measured results

< 口 > < 同

Thanks to:

Brad Oborn Peter Metcalfe Lois Holloway Paul Keall Jarrad Begg Urszula Jelen Bin Dong Armia George Gary Liney Sarah Alnaghy Trent Causer Thahabah AlHarthi

イロト イロト イヨト

